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cs-REGULAR NETWORKS AND METRIZATION
THEOREMS

PENGFEI YAN AND SHOU LIN∗

Abstract. The main purpose of this paper is to establish
several metrization theorems related to cs-regular k-networks,
which generalize some known results and answer a question
of the second author in [6].

1. Introduction

In 1960, Arhangel’skǐı [2] gave a metrization theorem, showing
that a T1-space is metrizable if and only if it has a regular base.
In recent years, some topologists [5, 9] discussed the properties
of various regular networks, such as LF -regular networks, PF -
regular networks, and obtained relations between these networks
and metrization. Jiang [4] introduced the concept of cs-regular
collections as a generalization of regular collections. The second
author in [6] proved that a T2-space X is metrizable if and only if
it has a cs-regular weak base, and posed the following question: “ Is
every first-countable and regular space with a cs-regular k-network
metrizable?” In this paper, we study the properties of cs-regular
k-networks, positively answer this question and show that every
sequential space with cs-regular closed k-networks is metrizable,
which generalizes some metrization theorems in [7] and [9].

Let X be a space, and {xn} a sequence converging to x in X , we
denote T (x) = {x}

⋃
{xn : n ∈ N}, T (x, m) = {x}

⋃
{xn : n ≥ m}

for each m ∈ N. Let us recall some definitions.
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Definition 1.1. Let X be a space and P a family of subsets of X .
(1) P is point-regular [1] if for each open set U in X ,

{P ∈ P : P 6⊂ U} is point-finite at each point of U .
(2) P is cs-regular [4] if for each converging sequence T (x) and

an open neighborhood U of x in X , there exists m ∈ N such that
{P ∈ P : P

⋂
T (x, m) 6= ∅, P 6⊂ U} is finite.

(3) P is regular [2] if for each open set U in X , {P ∈ P : P 6⊂ U}
is locally finite at each point of U .

Aleksandrov [1] and Arhangel’skǐı [2] studied the spaces with
a point-regular base or a regular base, respectively. Junnila and
Yajima [5] considered the concepts of point-regularity and regular-
ity of networks, and the “point-regular” and “regular” are called
“PF -regular” and “LF -regular”, respectively. It is easy to show
that a regular collection =⇒ cs-regular collection =⇒ point-regular
collection.

Definition 1.2. Let (X, τ) be a space, and P a family of subsets
of X .

(1) P is a k-network of X if for every compact subset K and
K ⊂ U ∈ τ , there exists a finite P ′ ⊂ P such that K ⊂

⋃
P ′ ⊂ U .

(2) P is a weak base of X if P =
⋃

x∈X Px satisfying that (a) For
each x ∈ X , x ∈

⋂
Px; (b) If U, V ∈ Px, then there exists W ∈ Px

such that W ⊂ U
⋂

V ; (c) U is an open subset of X if and only if
for every x ∈ U , there exists P ∈ Px such that P ⊂ U . The Px is
called a weak base of x in X for each x ∈ X .

(3) P is a cs∗-network of X if for every converging sequence T (x)
and x ∈ U ∈ τ , there exist a subsequence T1(x) of T (x) and P ∈ P
such that T1(x) ⊂ P ⊂ U .

(4) P is a cs∗-cover of X if for every converging sequence T (x),
there exist a subsequence T1(x) of T (x) and P ∈ P such that
T1(x) ⊂ P .

A closed k-network or a weak base is a cs∗-network.

Definition 1.3. Let X be a space.
(1) A sequence {Pn} of covers of X is a weak development of X

if {st(x,Pn) : n ∈ N} forms a weak base of x in X for each x ∈ X .
(2) A sequence {Pn} of covers of X is a point-star network of X

if {st(x,Pn) : n ∈ N} forms a network of x in X for each x ∈ X .

H. Martin proved the following result.
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Theorem 1.4 [8]. A T2-space X is metrizable if and only if X has
a weak development {Pn} such that {st2(x,Pn) : n ∈ N} forms a
weak base of x for each x ∈ X.

Throughout this paper, all spaces are assumed to be regular and
T1-spaces.

2. Metrization theorems

Lemma 2.1. Let X be a sequential space, and P a point-regular
cs∗-network which is closed under finite intersections. Then there
exists a sequence {Pn} of cs∗-covers of X such that P =

⋃
n∈N Pn

and {Pn} forms a weak development of X.

Proof. Let P be a point-regular cs∗-network, then P has the fol-
lowing properties.

(1) If x ∈ X and {Pn : n ∈ N} is an infinite subset of (P)x, then
{Pn : n ∈ N} is a network of x in X .

Obviously, every infinite subset of (P)x is a network of x in X .
(2) For each P ∈ P , there exists R ∈ P such that P ⊂ R, and

Q ⊃ R if and only if Q = R for any Q ∈ P .
Suppose not, there exists {Pn} satisfying that P1 = P, Pn ⊂

Pn+1 and Pn 6= Pn+1. Let {x, y} ⊂ P and x 6= y, then {Pn} is a
network of x, a contradiction.

Let S(X) = {{x} : x is an isolated point in X}, then S(X) ⊂ P .
Denote Pm = {R ∈ P : if R ⊂ P ∈ P , then R = P}, then Pm

is a cs∗-cover of X from (2). Let P ′
= (P \ Pm)

⋃
S(X). We shall

show that P ′
is also a point-regular cs∗-network.

It is obvious that P ′
is point-regular. Let T (x) be a sequence

converging to x ∈ X , and U an open neighborhood of x, then
there exist P1 ∈ P and a subsequence T1(x) ⊂ P1 ⊂ U . Pick y ∈
T1(x)\{x}, then T1(x)\{y} ⊂ X \{y}, so there exist a subsequence
T2(x) of T1(x) and P2 ∈ P such that T2(x) ⊂ P2 ⊂ X \ {y}. Let
P = P1

⋂
P2, then T2(x) ⊂ P ⊂ U , and P ∈ P ′

, hence P ′
is a

point-regular cs∗-network.
Let P1 = Pm,Pn+1 = [(P \

⋃n
i=1 Pi)

⋃
S(X)]m, n ∈ N, then

P =
⋃

n∈N Pn by (2) and each Pn+1 refines Pn.
For each x ∈ X and Pn ∈ (Pn)x, n ∈ N, if x ∈ S(X), then

Pm = {x} for some m ∈ N, so {Pn : n ∈ N} is a network of x. If
x is not an isolated point in X , then {Pn : n ∈ N} is an infinite
subset of (P)x, therefore, {Pn : n ∈ N} is a network of x by (1).
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Hence, {st(x,Pn) : n ∈ N} forms a network of x in X . On the other
hand, since Pn is a cs∗-cover of X , st(x,Pn) is a sequential neigh-
borhood of x for each x ∈ X and n ∈ N. Since X is a sequential
space, {st(x,Pn) : n ∈ N} forms a weak base of x. Therefore {Pn}
forms a weak development of X . 2

Theorem 2.2. The following are equivalent for a sequential space
X:

(1) X is metrizable.
(2) X has a cs-regular cs∗-network.
(3) X has a weak development {Pn} satisfying that for every

converging sequence T (x) ⊂ U ∈ τ , there exists n ∈ N such that
st(T (x),Pn) ⊂ U .

Proof. (1)⇒(2). Trivial.
(2)⇒ (3). Let P be a cs-regular cs∗-network, we can assume that

P is closed under finite intersections, then P =
⋃

n∈N Pn such that
{Pn} forms a weak development of X by Lemma 2.1.

Let T (x) ⊂ U ∈ τ . Since P is cs-regular, there is m ∈ N such
that {P ∈ P : P

⋂
T (x, m) 6= ∅, P 6⊂ U} is finite. So we can find

n0 ∈ N satisfying that st(T (x, m),Pn) ⊂ U whenever n > n0.
For each i < m, pick ni ∈ N such that st(xi,Pni) ⊂ U . Let

k0 = max{ni : 0 ≤ i < m}, then st(T (x),Pn) ⊂ U whenever
n > k0.

(3)⇒(1). Let {Pn} be a weak development of X satisfying (3)
and that Pn+1 refines Pn for each n ∈ N. By Theorem 1.4, we only
need to show that for each x ∈ X , {st2(x,Pn) : n ∈ N} forms a
weak base of x. Suppose not, then for some x ∈ X and an open
neighborhood V of x, st2(x,Pn) 6⊂ V for each n ∈ N, thus there
exists Pn ∈ Pn such that st(x,Pn)

⋂
Pn 6= ∅ and Pn 6⊂ V . Pick

xn ∈ st(x,Pn)
⋂

Pn, then the sequence {xn} converges to x, so
T (x, m0) ⊂ V for some m0 ∈ N. By the property of {Pn}, there
exists n0 ∈ N satisfying st(T (x, m0),Pn0) ⊂ V . Thus Pn0+m0 ⊂
st(T (x, m0),Pn0+m0) ⊂ st(T (x, m0),Pn0) ⊂ V , a contradiction , so
X is metrizable. 2

Corollary 2.3. A sequential space with a cs-regular closed k-
network is metrizable.

Corollary 2.4 [7]. A k-space with a regular k-network is metriz-
able.
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Proof. Let X be a k-space with a regular k-network. By the regu-
larity of X and Lemma 1.1 in [5], X has a regular closed k-network.
We know that this k-network is point-countable from the proof of
Theorem 6 in [7], so X is a sequential space by Corollary 3.4 in [3],
hence X is metrizable. 2

The following result answers positively a question posed in [6].

Theorem 2.5. Every first countable space with a cs-regular k-
network is metrizable.

Proof. Let P be a cs-regular k-network of a first countable space
X , and P = {P : P ∈ P}. Then P is a closed k-network of X . We
shall show that P is cs-regular.

First, P is point-regular. Let x∈U ∈τ, T (x)={x}
⋃
{xn :n∈N}.

Without loss of generality, we can assume that T (x) ⊂ U . Pick
V ∈ τ satisfying that x ∈ V ⊂ V ⊂ U . If {P : P ∈ P , x ∈ P 6⊂ U}
is not a finite set, then there exists a sequence {Pn} consisting of
distinct elements of P such that x ∈ Pn 6⊂ U . Since X is a Fréchet
space, there is a sequence {xnj} in Pn converging to x for each
n ∈ N. From the first countability of X , we can pick a sequence
{xnj(n)}n∈N converging to x of the set {xnj : n, j ∈ N} such that
all j(n)

′
s are distinct. Let T1(x) = {x}

⋃
{xnj(n) : n ∈ N}. Since P

is cs-regular, {P ∈ P : T1(x, m)
⋂

P 6= ∅, P 6⊂ V } is finite for some
m ∈ N. One the other hand, if k ≥ m, then Pk

⋂
T1(x, m) 6= ∅ and

Pk 6⊂ V , a contradiction, so P is a point-regular k-network.
Let F = {P 6⊂ U : P ∈ P , T (x)

⋂
P 6= ∅}, then F is finite.

Suppose not, then there exists a subsequence {xnk
} of {xn} and a

sequence {Pk} consisting of distinct elements of P such that xnk
∈

Pk 6⊂ U . For each k ∈ N, pick a sequence {ykj} in Pk converging
to xnk

. By the first countability of X , we can find a sequence
{ykj(k)}k∈N converging to x of the set {ykj : k, j ∈ N} such that
all j(k)

′
s are distinct, which contradicts the cs-regularity of P by

repeating the process of the last paragraph, so P is a cs-regular
closed k-network of X . Therefore X is metrizable. 2

3. Example

In this section, we shall give some examples to show the necessity
of conditions in main theorems of this paper.
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The following example explains that the condition of sequential
spaces in Theorem 2.2 can’t be weakened to one of k-spaces.

Example 3.1. A compact space with a cs-regular cs∗-network is
not sequential.

Let X be the C̆ech-Stone compactification βN of N, then X is a
compact space without any non-trivial converging sequence. Obvi-
ously, X is not a sequential space, and {{x} : x ∈ X} is a cs-regular
cs∗-network of X . 2

In Corollary 2.3, the closed property of k-networks is important.
And in Theorem 2.5, the first countability can’t be weakened to
Fréchetness.

Example 3.2. Sequential fan Sω is a Fréchet space with a
cs-regular k-network, which is not first countable.

We only need to show that Sω has a cs-regular k-network. Let
Sω={x0}

⋃
{xnm : n, m ∈ N}, where the sequence {xnm}m∈N con-

verging to x0 for each n ∈ N. For every n, m ∈ N, denote V (n, m) =
{xnj : j ≥ m}, then collection {{x} :x∈Sω}

⋃
{V (n, m) :n, m∈N}

is a cs-regular k-network. 2

Finally, we show the importance of regularity of spaces in this
paper.

Example 3.3. Half-disc topological space X is a first-countable,
T2-space with a regular k-network, but X is not a regular space.

Let τ be Euclidean topology of R2. S = {(x, y) ∈ R2 : y > 0},
L = {(x, 0) : x ∈ R} and X = S

⋃
L. X is endowed the following

topology τ∗ = τ|X
⋃
{{x} ∪ (S ∩ U) : x ∈ L, x ∈ U ∈ τ}, then

(X, τ∗) is called a half-disc topological space [10]. From the proof
in [10], X is a first-countable, T2 and non-regular space. Next, we
show that X has a regular k-network.

For every x ∈ R2, r > 0, let B(x, r) be the open ball in (R2, τ)
with center x and radius r. For each i ∈ N, let Bi be a locally finite
open refinement of open cover {B(x, 1/4i) : x ∈ R2} in (R2, τ), then
B =

⋃∞
i=1 Bi is a regular base in (R2, τ). In fact, for each x ∈ R2

and an open neighborhood O of x in (R2, τ), there exists i ∈ N such
that B(x, 1/i) ⊂ O, let V0 = B(x, 1/2i), for every k ≤ i, since Bk

is locally finite, there exists an open neighborhood Vk such that Vk

only meets finite many elements of Bk. Let V =
⋂i

k=0 Vk, then V
is an open neighborhood of x and {B ∈ B : B

⋂
V 6= ∅, B 6⊂ O} is
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finite. Put P = {{p} : p ∈ L}
⋃
B|S , then P is a regular collection,

so we only need to show it is a k-network of X . Let K be a non-
empty compact subset of X , and U an open neighborhood of K
in X . For each x ∈ X , let {P ∈ P : x ∈ P ⊂ U}= {Pn(x) : n ∈ N},
then there exists a finite subset of {Pn(x) : x ∈ K, n ∈ N} covering
K. Suppose not, we can pick out a sequence {pn} in K such that
pn 6∈ Pi(pj) for each i, j < n. Since K is first-countable, there
exists a subsequence {pnk

} of {pn} converging to p ∈ K. By the
discreteness of L, we can assume pnk

∈ S for each k ∈ N, then
{pnk

} converging to p, also, B is a base of τ , so there are B ∈
B and m ∈ N such that {pnk

: k ≥ m} ⊂ B
⋂

S ⊂ U . Thus
B

⋂
S = Pi(pj) for some i, j ∈ N, hence there exists n > i, j such

that pn ∈ Pi(pj), a contradiction. Therefore, P is a k-network of
X , and X has a regular k-network.
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