

Available online at www.sciencedirect.com

Topology and its Applications

Topology and its Applications 154 (2007) 449-454

www.elsevier.com/locate/topol

On countable-to-one maps \ddagger

Chuan Liu^{a,*}, Shou Lin^b

^a Department of Mathematics, Ohio University-Zanesville, Ohio, OH 43701, USA ^b Institute of Mathematics, Ningde Teachers' College, Fujian 352100, PR China

Received 25 November 2005; accepted 5 June 2006

Abstract

In this paper, it is proved that a space with a point-countable base is an open, countable-to-one image of a metric space, and a quotient, countable-to-one image of a metric space is characterized by a point-countable \aleph_0 -weak base. Examples are provided in order to answer negatively questions posed by Gruenhage et al. [G. Gruenhage, E. Michael, Y. Tanaka, Spaces determined by point-countable covers, Pacific J. Math. 113 (1984) 303–332] and Tanaka [Y. Tanaka, Closed maps and symmetric spaces, Questions Answers Gen. Topology 11 (1993) 215–233].

MSC: 54C10; 54E40; 54D55; 54E20

Keywords: Countable-to-one maps; Quotient maps; No-weak bases; Sequential spaces

1. Introduction

The certain images of metric spaces have been studied extensively in the past years [6]. It is well known that a T_0 -space has a point-countable base if and only if it is an open *s*-image of a metric space [3], here $f: X \to Y$ is an *s*-map if each fiber $f^{-1}(y)$ is separable in X. G. Gruenhage et al. [4] showed that spaces determined by point-countable covers are preserved by quotient maps with countable fibers. Every countable-to-one map is an *s*-map. Are quotient countable-to-one images on metric spaces and quotient *s*-images on metric spaces coincident? The question is discussed and some related results are obtained in this paper.

Throughout this paper, all spaces are assumed to be T_2 , all maps are continuous and onto. Denote real, irrational and rational numbers by \mathbb{R} , \mathbb{P} and \mathbb{Q} , respectively. We refer the reader to [2] for notations and terminology not explicitly given here.

2. Main results

Theorem 1. *The following are equivalent for a space X*:

 $^{^{\}ddagger}$ This project was supported by NNSF of China (No. 10571151).

^{*} Corresponding author. Tel.: +1 740 588 1419; fax: +1 740 453 6161. E-mail addresses: liuc1@ohio.edu (C. Liu), linshou@public.ndptt.fj.cn (S. Lin).

^{0166-8641/\$ –} see front matter @ 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2006.06.002

- (1) X has a point-countable base.
- (2) X is an open s-image of a metric space.
- (3) X is an open, countable-to-one image of a metric space.

Proof. It is well known that (1) and (2) are equivalent. $(3) \Rightarrow (2)$ is obvious. We prove that $(2) \Rightarrow (3)$.

Let $f: M \to X$ be an open s-map from a metric space M onto the space X. For each $x \in X$, let D_x denote a countable dense subset of $f^{-1}(x)$ because $f^{-1}(x)$ is separable. Put $D = \bigcup \{D_x: x \in X\}$, and $g = f|_D: D \to X$. Then g is a countable-to-one map. We prove that g is open. Let U be an open subset of D. There is an open subset V in M such that $U = V \cap D$. If g(U) is not open in X, there is $x \in g(U) \cap \overline{X \setminus g(U)}$. Since X is first countable, there is a sequence $\{x_n\}$ in $X \setminus g(U)$ with $x_n \to x$ in X. Because $x \in f(V)$ and f(V) is open in X, without loss of generality, we can assume that each $x_n \in f(V)$. Thus $f^{-1}(x_n) \cap V \neq \emptyset$, and $D_{x_n} \cap V \neq \emptyset$. Pick $y_n \in D_{x_n} \cap V \subset U$, then $x_n = g(y_n) \in g(U)$, a contradiction. Thus g(U) is open in X. Hence g is an open map and X is an open, countable-to-one image of the metric space D. \Box

Definition 2. Let \mathcal{B} be a family of subsets of a space X. \mathcal{B} is said to be an \aleph_0 -weak base for X if $\mathcal{B} = \bigcup \{\mathcal{B}_x(n) : x \in X, n \in \mathbb{N}\}$ satisfies

- (1) For each $x \in X$, $n \in \mathbb{N}$, $\mathcal{B}_x(n)$ is closed under finite intersections and $x \in \bigcap \mathcal{B}_x(n)$.
- (2) A subset U of X is open if and only if whenever $x \in U$ and $n \in \mathbb{N}$, there exists a $B_x(n) \in \mathcal{B}_x(n)$ such that $B_x(n) \subset U$.

X is called \aleph_0 -weakly first-countable [10] or weakly quasi-first-countable in the sense of Sirois-Dumais [9] if $\mathcal{B}_x(n)$ is countable for each $x \in X$, $n \in \mathbb{N}$.

If $\mathcal{B}_x(n) = \mathcal{B}_x(1)$ for each $n \in \mathbb{N}$ in the definition of \aleph_0 -weak bases, the \mathcal{B} is said to be a *weak base* for X [1]. X is called *weakly first-countable* or *g-first countable* in the sense of Arhangel'skii [1] if $\mathcal{B}_x(1)$ is countable for each $x \in X$.

Let X be a space. $P \subset X$ is called a *sequential neighborhood* of x in X, if each sequence converging to x in X is eventually in P. A subset U of X is called *sequentially open* if U is a sequential neighborhood of each of its points. X is called a *sequential space* if each sequential open subset of X is open.

Lemma 3. [9] Every \aleph_0 -weakly first-countable space is sequential.

Let $f: X \to Y$ be a map. f is called *subsequence-covering* if whenever L is a convergent sequence in Y there is a convergent sequence S in X such that f(S) is a subsequence of L.

Lemma 4. [6] Let $f: X \to Y$ be a map, and Y a sequential space. Then f is quotient if and only if Y is a sequential space and f is subsequence-covering.

Theorem 5. *X* is a quotient, countable-to-one image of a metric space if and only if X has a point-countable \aleph_0 -weak base.

Proof. Necessity. Let $f: M \to X$ be a quotient, countable-to-one map from a metric space M onto the space X. Let \mathcal{B} be a point-countable base for M. For each $y \in M$, let $\mathcal{B}_y \subset \mathcal{B}$ be a countable, decreasing local base at y in M. Put $\mathcal{B}' = \{\mathcal{B}_y: y \in M\}$. Then \mathcal{B}' is a point-countable family of M. Since f is a countable-to-one map, $f(\mathcal{B}')$ is point-countable in X. We shall check that $f(\mathcal{B}')$ is an \aleph_0 -weak base for X.

For each $y \in M$, denote \mathcal{B}_y by $\{B_{y,i}: i \in \mathbb{N}\}$ with each $B_{y,i+1} \subset B_{y,i}$. For each $x \in X$, denote $f^{-1}(x)$ by $\{x_n: n \in \mathbb{N}\}$. Let $\mathcal{P}_x(n) = f(\mathcal{B}_{x_n})$. Then $f(\mathcal{B}') = \bigcup \{\mathcal{P}_x(n): x \in X, n \in \mathbb{N}\}$. Let U be open in X. For each $x \in U, n \in \mathbb{N}$, $x_n \in f^{-1}(U)$, then $B_{x_n,i} \subset f^{-1}(U)$ for some $i \in \mathbb{N}$, thus $f(B_{x_n,i}) \in \mathcal{P}_x(n)$ and $f(B_{x_n,i}) \subset U$. On the other hand, let U be a subset of X satisfying for each $x \in U, n \in \mathbb{N}$, there exist $i \in \mathbb{N}$ such that $f(B_{x_n,i}) \subset U$. We prove that U is open in X. Since f is quotient, X is a sequential space by Lemma 4, it suffices to prove that U is sequential open in X. Suppose that U is not sequential open, there is a sequence L in $X \setminus U$ converging to $x \in U$. Since f is a quotient

map, there is a sequence S converging to some $x_n \in f^{-1}(x)$ in M such that f(S) is a subsequence of L by Lemma 4. Since the sequence S is eventually in $B_{x_n,i}$, thus the sequence f(S) is eventually in $f(B_{x_n,i}) \subset U$, a contradiction. Thus U is sequential open. Hence, X has a point-countable \aleph_0 -weak base.

Sufficiency. Let $\mathcal{B} = \bigcup \{\mathcal{B}_x(n): x \in X, n \in \mathbb{N}\}$ be a point-countable \aleph_0 -weak base, here each $\mathcal{B}_x(n) = \{B_x(n,m): m \in \mathbb{N}\}$ with $B_x(n,m+1) \subset B_x(n,m)$ for each $m \in \mathbb{N}$. Then any subsequence \mathcal{B}'_x of $\{B_x(n,m)\}_{m \in \mathbb{N}}$ is a network at x in X for each $x \in X$ and $n \in \mathbb{N}$, i.e., if U is an open neighborhood of x in X, then $x \in B \subset U$ for some $B \in \mathcal{B}'_x$. We rewrite $\mathcal{B} = \{B_\alpha: \alpha \in I\}$. Endow I with discrete topology and let I_i be a copy of I for each $i \in \mathbb{N}$. For convenience' sake, two families $\{P_n\}_{n \in \mathbb{N}}$ and $\{Q_n\}_{n \in \mathbb{N}}$ of subsets of a space are said to be cofinal if there exist $n_0, m_0 \in \mathbb{N}$ such that $P_{n_0+i} = Q_{m_0+i}$ for every $i \in \mathbb{N}$. Put

$$M = \left\{ \alpha = (\alpha_i) \in \prod_{i \in \mathbb{N}} I_i \colon \{B_{\alpha_i}\}_{i \in \mathbb{N}} \text{ is cofinal to } \mathcal{B}_{x_\alpha}(n) \text{ for some } x_\alpha \in X, \ n \in \mathbb{N}, \ \{B_{\alpha_i}\}_{i \in \mathbb{N}} \text{ is a network of } x_\alpha \right\}.$$

Define $f: M \to X$ as $f(\alpha) = x_{\alpha}$. It is easy to see that f is well-defined and onto because X is Hausdorff and each $\mathcal{B}_{x}(n)$ is a network of x in X for each $n \in \mathbb{N}$. And $f(\alpha) = \bigcap_{i \in \mathbb{N}} B_{\alpha_i}$ for each $\alpha = (\alpha_i) \in M$. Notice that \mathcal{B} is pointcountable, then f is countable-to-one. Also f is continuous, in fact, for any neighborhood U of x_{α} , since $\{B_{\alpha_i}\}_{i \in \mathbb{N}}$ is a network of x_{α} , there exists $m \in \mathbb{N}$ such that $B_{\alpha_m} \subset U$. Let $V = (I_1 \times \cdots \times \{\alpha_m\} \times I_{m+1} \times \cdots) \cap M$, then V is an open neighborhood of α in M and $f(V) \subset B_{\alpha_m} \subset U$, hence f is continuous.

To prove that f is a quotient map, we only need to prove that f is a subsequence-covering map by Lemmas 3 and 4.

Claim. Let L be a sequence converging to $x \notin L$ in X. Then there exist a subsequence L' of L and $n_0 \in \mathbb{N}$ such that L' is eventually in $B_x(n_0, m)$ for any $m \in \mathbb{N}$.

In fact, since the set *L* is not closed in *X*, there is $n_0 \in \mathbb{N}$ such that $B_x(n_0, m) \cap L \neq \emptyset$ for any $m \in \mathbb{N}$ by Definition 2. If $B_x(n_0, m) \cap L$ is finite for some $m \in \mathbb{N}$, then $B_x(n_0, k) \subset X \setminus (B_x(n_0, m) \cap L)$ for some $k \ge m$, thus $B_x(n_0, k) \cap L = \emptyset$, a contradiction. So $B_x(n_0, m) \cap L$ is infinite for any $m \in \mathbb{N}$, hence there exist a subsequence *L'* of *L* such that *L'* is eventually in $B_x(n_0, m)$ for any $m \in \mathbb{N}$. Denote *L* by $\{x_k\}$.

For each $i \in \mathbb{N}$, take $\alpha_i \in I_i$ with $B_{\alpha_i} = B_x(n_0, i)$. Let $\alpha = (\alpha_i)$, then $\alpha \in M$. For each $k \in \mathbb{N}$, put $n_k = \min\{m \in \mathbb{N} : x_k \notin B_x(n_0, m)\}$. Construct $z_k = (\beta_i(k)) \in \prod_{i \in \mathbb{N}} I_i$ as follows: if $i < n_k$, pick $\beta_i(k) \in I_i$ with $B_{\beta_i(k)} = B_x(n_0, i)$; otherwise pick $\beta_i(k) \in I_i$ such that $B_{\beta_i(k)} = B_{x_k}(1, i - n_k + 1)$. Then $\{B_{\beta_i}(k)\}_{i \in \mathbb{N}}$ is cofinal to $B_{x_k}(1)$, thus $z_k \in M$ and $f(z_k) = x_k$. On the other hand, for each $i \in \mathbb{N}$, there is $k_0 \in \mathbb{N}$ such that $x_k \in B_x(n_0, i)$ for any $k \ge k_0$ because L' is eventually in $B_x(n_0, i)$. Then $i < n_k$ when $k \ge k_0$ by the definition of n_k , so $\beta_i(k) = \alpha_i$. It implies that the sequence $\{\beta_i(k)\}_{k \in \mathbb{N}}$ converges to α_i in the discrete space I_i . Hence, $\{z_k\}$ converges to α in M. Therefore, f is subsequence-covering, and f is a quotient map. \Box

It is natural to ask whether a quotient *s*-image of a metric space is a quotient, countable-to-one image of a metric space. The following example shows that the answer is "no".

Example 6. There is a closed image of a separable metric space, which is not \aleph_0 -weakly first-countable.

Proof. Let $X = \mathbb{R}^2 \setminus (\mathbb{Q} \times \{0\})$ be endowed with the subspace topology of \mathbb{R}^2 with the usual topology. Then X is a separable metric space. Let Y be the quotient space from X by identifying $\mathbb{P} \times \{0\}$ to a point. It is obvious that the quotient map is a closed map. It has been proved that if an image of a metric space under a closed map is \aleph_0 -weakly first-countable, then the each boundary of fibers is σ -compact by Theorem 2.1 in [7]. Since $\mathbb{P} \times \{0\}$ is not σ -compact in X, Y is not \aleph_0 -weakly first-countable. \Box

We do not know if a quotient, σ -compact image of a metric space is a quotient, countable-to-one image of a metric space. We shall give a partial answer to the question.

Recall some related concepts. Let X be a space. A family \mathcal{P} of subsets of X is said to be a *cs-network* [5] for X, if whenever U is an open set and a sequence $\{x_n\}$ in X converges to a point in U, then $\{x_n\}$ is eventually in P and $P \subset U$ for some $P \in \mathcal{P}$. A space is said to be an \aleph_0 -space [5], if it has a countable *cs*-network.

Theorem 7. *The following are equivalent for a space X:*

- (1) *X* is a quotient, countable-to-one image of a separable metric space.
- (2) X is a quotient, σ -compact image of a separable metric space.
- (3) X is \aleph_0 -weakly first-countable and a quotient image of a separable metric space.
- (4) *X* has a countable \aleph_0 -weak base.
- (5) *X* is an \aleph_0 -weakly first-countable and \aleph_0 -space.

Proof. (1) \Rightarrow (2) is trivial. (2) \Rightarrow (3) due to [9]. (3) \Rightarrow (5) is obvious [3]. We shall prove that (5) \Rightarrow (4) \Rightarrow (1). Let \mathcal{P} be a countable *cs*-network which is closed under finite intersections. Let $\bigcup \{\mathcal{B}_x(n): x \in X, n \in \mathbb{N}\}$ be an \aleph_0 -weak base for X, here each $\mathcal{B}_x(n) = \{B_x(n,m): m \in \mathbb{N}\}$ with $B_x(n,m+1) \subset B_x(n,m)$ for each $m \in \mathbb{N}$. For each $n \in \mathbb{N}$, let $\mathcal{P}_x(n) = \{P \in \mathcal{P}: B_x(n,m) \subset P \text{ for some } m \in \mathbb{N}\}$. Then $\mathcal{P}_x(n)$ is closed under finite intersections.

 $\mathcal{P}_x(n)$ is a network of x in X. In fact, suppose not, there is a neighborhood U of x in X such that $P \not\subset U$ for each $P \in \mathcal{P}_x(n)$. Put $\{P \in \mathcal{P}: x \in P \subset U\} = \{P_k: k \in \mathbb{N}\}$. Then $B_x(n, m) \not\subset P_k$ for any $m, k \in \mathbb{N}$. Pick $x_{mk} \in B_x(n, m) \setminus P_k$ for each $m \ge k$. Let $y_i = x_{mk}$, where i = k + m(m-1)/2. Then the sequence $\{y_i\}$ converges to x in X because $\{B_x(n,m)\}_{m \in \mathbb{N}}$ is a decreasing network of x in X. Since \mathcal{P} is a *cs*-network for X, there exist $k, j \in \mathbb{N}$ such that $\{y_i: i \ge j\} \subset P_k$. Pick $i \ge j$ such that $y_i = x_{mk}$ for some $m \ge k$, then $x_{mk} \in P_k$, a contradiction.

Put $\mathcal{B} = \bigcup \{\mathcal{P}_x(n): x \in X, n \in \mathbb{N}\}$. Then \mathcal{B} is countable. We shall prove that \mathcal{B} is an \aleph_0 -weak base for X. We only need to prove that a subset V of X is open if whenever $x \in V$, $n \in \mathbb{N}$, there exists a $P_x(n) \in \mathcal{P}_x(n)$ such that $P_x(n) \subset V$. If V is not open in X, then V is not sequentially open because X is sequential by Lemma 3. There is a sequence L in $X \setminus V$ converging to a point $x \in V$. By the claim in the proof of Theorem 5, there exist a subsequence L' of L and $n_0 \in \mathbb{N}$ such that L' is eventually in $B_x(n_0, m)$ for any $m \in \mathbb{N}$. But $B_x(n_0, m) \subset P_x(n_0)$ for some $m \in \mathbb{N}$, so L' is eventually in $P_x(n_0) \subset V$, a contradiction. Hence, \mathcal{B} is a countable \aleph_0 -weak base for X.

(4) \Rightarrow (1) similar to the proof of the Sufficiency of Theorem 5, where each I_i is countable and M is a separable metric space. \Box

In the final part of this section we discuss the closed, countable-to-one images of metric spaces. A space X is said to be a *Fréchet space* if whenever $x \in \overline{A}$ in X there is a sequence in A which converges to x in X. A space X is *determined by* a cover \mathcal{P} if $U \subset X$ is open (closed) in X if and only if $U \cap P$ is open (closed) in P for each $P \in \mathcal{P}$ [4].

Theorem 8. Let X be a Fréchet space determined by a countable cover of closed metric subsets. Then X is a closed, countable-to-one image of a metric space.

Proof. Suppose that *X* is determined by a countable cover $\{X_n\}_{n \in \mathbb{N}}$ of closed metric subsets. Let $Y_n = X_n \setminus \bigcup \{X_i : i < n\}$, $Z_n = \overline{Y}_n$ for each $n \in \mathbb{N}$. Then $Y_i \cap Y_j = \emptyset$ if $i \neq j$. Note that if $x_n \in Y_n$, $\{x_n : n \in \mathbb{N}\}$ is a closed discrete subspace of *X*. In fact, if $A \subset \{x_n : n \in \mathbb{N}\}$, then $A \cap X_n \subset \{x_i : i \leq n\}$, which is closed in X_n for each $n \in \mathbb{N}$. Thus *A* is closed in *X* because *X* is determined by $\{X_n : n \in \mathbb{N}\}$.

Let $f: \bigoplus_{n \in \mathbb{N}} Z_n \to X$ be the obvious map. Then f is a countable-to-one map. Let A be a closed subset in $\bigoplus_{n \in \mathbb{N}} Z_n$.

Claim. f(A) is closed in X.

Suppose not, there is a sequence $\{y_n\}$ in f(A) with $y_n \to y \notin f(A)$. If $A \cap Z_{i_0} \cap \{y_n: n \in \mathbb{N}\}$ is infinite for some $i_0 \in \mathbb{N}, y \in A \cap Z_{i_0}$ as $A \cap Z_{i_0}$ is closed. Thus $y \in f(A)$, a contradiction. Hence, $A \cap Z_i \cap \{y_n: n \in \mathbb{N}\}$ is finite for each $i \in \mathbb{N}$. There is a subsequence $\{z_k\}$ of $\{y_n\}$ such that $z_k \in A \cap Z_{i_k}$ with each $i_k < i_{k+1}$. For each $k \in \mathbb{N}$, there is a sequence $\{x_n(k)\}$ in Y_{i_k} with $x_n(k) \to z_k$ in X. Thus $y \in \{x_n(k): n, k \in \mathbb{N}\}$. There is a sequence $\{x_{n_m}(k_m)\}_{m \in \mathbb{N}}$ converging to y, where each $k_m < k_{m+1}$. This is a contradiction because $\{x_{n_m}(k_m): m \in \mathbb{N}\}$ is closed.

Hence, X is a closed, countable-to-one image of a metric space. \Box

Example 9. There is a closed image of a countable metric space, which is not determined by a countable cover of metric subsets.

Proof. Let $X = \{(x, y): x, y \in \mathbb{Q}\}$ be endowed with the subspace topology of \mathbb{R}^2 with the usual topology. Then X is a countable metric space. Let $A = \{(x, 0): x \in \mathbb{Q}\}$. And let Y = X/A be the quotient space from X by identifying all the points of A. Then Y is a closed image of a countable metric space. But Y is not determined by a countable cover of metric subsets by [12, Example 1.5(1)]. \Box

Question 10. How does one characterize, in intrinsic terms, closed, countable-to-one images of metric spaces?

3. Examples

In this section, two questions about open maps are negatively answered.

Question 11. [11] Does every open map preserve a weakly first-countable space?

We shall give an example which shows that an open, countable-to-one map may not preserve a weakly firstcountable space.

Lemma 12. Let \mathbb{R} be the real numbers with the usual topology. Then \mathbb{R} has ω_1 many disjoint dense subsets.

Proof. For each $r \in \mathbb{R}$, put $r + \mathbb{Q} = \{r + q : q \in \mathbb{Q}\}$. Pick $p_1 \in \mathbb{P}$, then $p_1 + \mathbb{Q}$ is a dense subset that is disjoint with \mathbb{Q} . For $\alpha < \omega_1$, assume we have selected out disjoint dense subsets $\{p_\beta + \mathbb{Q}: \beta < \alpha\}$. Let $A = \mathbb{R} \setminus \bigcup \{p_\beta + \mathbb{Q}: \beta < \alpha\}$, pick $p_\alpha \in A \cap \mathbb{P}$, then $(p_\alpha + \mathbb{Q}) \cap (p_\beta + \mathbb{Q}) = \emptyset$ for each $\beta < \alpha$. Otherwise, there are $r_1, r_2 \in \mathbb{Q}$ such that $p_\alpha + r_1 = p_\beta + r_2$, so $p_\alpha = p_\beta + r_2 - r_1 \in p_\beta + \mathbb{Q}$, a contradiction. In this way, we obtain ω_1 many disjoint dense subsets $\{p_\alpha + \mathbb{Q}: \alpha < \omega_1\}$.

Let S_{κ} be the quotient space by identifying all limit points of the topological sum of κ many convergent sequences.

Example 13. There is an open map from a countable space with a countable weak base onto S_{ω} .

Proof. Let $R = \bigcup \{p_i + \mathbb{Q}: i \in \mathbb{N}\}$, where $\{p_i + \mathbb{Q}: i \in \mathbb{N}\}$ are disjoint dense subsets of \mathbb{R} by Lemma 9. We write $p_i + \mathbb{Q} = \{p_i + r_n: n \in \mathbb{N}\}$. For each $p_i + r_n$, take a sequence $\{x_j(p_i, r_n)\}$ which converges to a point $x(p_i, r_n)$ in \mathbb{R}^2 . Let M be the topological sum $R \oplus (\bigoplus \{\{x_j(p_i, r_n): j \in \mathbb{N}\} \cup \{x(p_i, r_n)\}: i, n \in \mathbb{N}\})$. And let X be the quotient space of M by identifying $x(p_i, r_n)$ and $p_i + r_n$ to a point. Then X is a quotient, two-to-one image of the countable metric space M, hence X is a countable space with a countable weak base [8]. We write $S_\omega = \{\infty\} \cup \{z_j(i): i, j \in \mathbb{N}\}$, where $z_j(i) \to \infty$ for each $i \in \mathbb{N}$. Define $f: X \to S_\omega$ as follows: $f(R) = \{\infty\}, f(x_j(p_i, r_n)) = z_j(i)$ for each $n \in \mathbb{N}$. It is not difficult to see that f is an open map.

Since S_{ω} is not weakly first-countable [8], it does not hold that spaces with weakly first-countability are preserved by open maps. \Box

Gruenhage et al. [4] proved that quotient *s*-images of metric spaces are preserved by quotient, countable-to-one maps; and pseudo-open, *s*-images of metric spaces are preserved by open, *s*-maps. They asked the following question in [4].

Question 14. Are quotient *s*-images of metric spaces preserved by open, *s*-maps?

We shall give a negative answer to this question by the following example, which also shows that an open compact map may not preserve a weakly first-countable space. This is another negative answer to Question 11.

Example 15. There is an open compact map from a quotient, two-to-one image of a metric space onto S_{ω_1} .

Proof. Let $\{p_{\alpha} + \mathbb{Q}: \alpha < \omega_1\}$ be disjoint families of dense subsets of \mathbb{R} by Lemma 9. We write $\{x \in [0, 1]: x \in p_{\alpha} + \mathbb{Q}\} = \{p_{\alpha} + r_n: n \in \mathbb{N}\}$. For each $\alpha < \omega_1$ and $n, j \in \mathbb{N}$, let $x_j(p_{\alpha}, r_n) = (p_{\alpha} + r_n, 1/j)$ and $x(p_{\alpha}, r_n) = (p_{\alpha} + r_n, 0)$. Then $x_j(p_{\alpha}, r_n) \rightarrow x(p_{\alpha}, r_n)$ in \mathbb{R}^2 . For $\alpha < \omega_1$, let $M_{\alpha} = (\bigcup_{n \in \mathbb{N}} \{x_j(p_{\alpha}, r_n): j \in \mathbb{N}\} \cup \{x(p_{\alpha}, r_n)\}) \cup \{x_{\alpha}(j): \alpha < \infty\}$. $\omega_1, j \in \mathbb{N}$ }, here each $x_{\alpha}(j) \in \mathbb{R}^2$. Define a topology on M_{α} as follows: each $x_j(p_{\alpha}, r_n)$ is an isolated point; an element of a local base of $x_{\alpha}(j)$ in M_{α} has the form $\{x_{\alpha}(j)\} \cup \{x_j(p_{\alpha}, r_n): n \ge m\}$, $\forall m \in \mathbb{N}$; an element of a local base of $x(p_{\alpha}, r_n)$ in M_{α} has the form $\{x(p_{\alpha}, r_n)\} \cup \{x_j(p_{\alpha}, r_n): j \ge m\}$, $\forall m \in \mathbb{N}$. It is easy to see that M_{α} is a countable, regular and first-countable space, hence it is a metrizable space. Let M be the topological sum of $\{M_{\alpha}: \alpha < \omega_1\}$. Let X be the quotient space of a topological sum $[0, 1] \oplus M$ by identifying $x(p_{\alpha}, r_n)$ and $p_{\alpha} + r_n$ to a point. Then X is a quotient, two-to-one image of a metric space. Thus X is also a weakly first-countable space [8].

We write $S_{\omega_1} = \{\infty\} \cup \{x_j(\alpha): j \in \mathbb{N}, \alpha < \omega_1\}$, where $x_j(\alpha) \to \infty$ for each $\alpha < \omega_1$. Define $f: X \to S_{\omega_1}$ by $f([0, 1]) = \{\infty\}, f(\{x_j(p_\alpha, r_n): n \in \mathbb{N}\} \cup \{x_\alpha(j)\}) = \{x_j(\alpha)\}$. It is easy to see that f is an open, compact, s-map.

Since S_{ω_1} is not any quotient, *s*-image of a metric space [6], it shows that an open, *s*-map may not preserve a quotient, *s*-image of a metric space. It is also proved that an open, compact map may not preserve a weakly first-countable space. \Box

References

- [1] A. Arhangel'skiĭ, Mappings and spaces, Russian Math. Surveys 21 (1966) 115-162.
- [2] R. Engelking, General Topology, revised and completed ed., Heldermann, Berlin, 1989.
- [3] G. Gruenhage, Generalized metric spaces, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, Elsevier, Amsterdam, 1984, pp. 423–501.
- [4] G. Gruenhage, E. Michael, Y. Tanaka, Spaces determined by point-countable covers, Pacific J. Math. 113 (2) (1984) 303-332.
- [5] J.A. Guthrie, A characterization of ℵ0-spaces, Gen. Topology Appl. 1 (1971) 105–110.
- [6] S. Lin, Generalized Metric Spaces and Mappings, Chinese Science Press, 1995 (in Chinese).
- [7] C. Liu, Notes on closed mappings, Houston J. Math., in press.
- [8] F. Siwiec, On defining a space by a weak base, Pacific J. Math. 52 (1) (1974) 233-245.
- [9] R. Sirois-Dumais, Quasi- and weakly quasi-first-countable spaces, Topology Appl. 11 (3) (1980) 223-230.
- [10] S.A. Svetlichny, Intersection of topologies and metrizability in topological groups, Vestnik Moskov. Univ. Matematika 44 (4) (1989) 79-81.
- [11] Y. Tanaka, Closed maps and symmetric spaces, Questions Answers Gen. Topology 11 (1993) 215–233.
- [12] Y. Tanaka, H.-x. Zhou, Spaces determined by metric subsets, and their character, Questions Answers Gen. Topology 3 (1985/1986) 145–160.