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Abstract

In this paper, it is proved that a space with a point-countable base is an open, countable-to-one image of a metric space, and
a quotient, countable-to-one image of a metric space is characterized by a point-countable ℵ0-weak base. Examples are provided
in order to answer negatively questions posed by Gruenhage et al. [G. Gruenhage, E. Michael, Y. Tanaka, Spaces determined
by point-countable covers, Pacific J. Math. 113 (1984) 303–332] and Tanaka [Y. Tanaka, Closed maps and symmetric spaces,
Questions Answers Gen. Topology 11 (1993) 215–233].
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1. Introduction

The certain images of metric spaces have been studied extensively in the past years [6]. It is well known that
a T0-space has a point-countable base if and only if it is an open s-image of a metric space [3], here f :X → Y is
an s-map if each fiber f −1(y) is separable in X. G. Gruenhage et al. [4] showed that spaces determined by point-
countable covers are preserved by quotient maps with countable fibers. Every countable-to-one map is an s-map. Are
quotient countable-to-one images on metric spaces and quotient s-images on metric spaces coincident? The question
is discussed and some related results are obtained in this paper.

Throughout this paper, all spaces are assumed to be T2, all maps are continuous and onto. Denote real, irrational and
rational numbers by R,P and Q, respectively. We refer the reader to [2] for notations and terminology not explicitly
given here.

2. Main results

Theorem 1. The following are equivalent for a space X:
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(1) X has a point-countable base.
(2) X is an open s-image of a metric space.
(3) X is an open, countable-to-one image of a metric space.

Proof. It is well known that (1) and (2) are equivalent. (3) ⇒ (2) is obvious. We prove that (2) ⇒ (3).
Let f :M → X be an open s-map from a metric space M onto the space X. For each x ∈ X, let Dx denote a

countable dense subset of f −1(x) because f −1(x) is separable. Put D = ⋃{Dx : x ∈ X}, and g = f |D :D → X.
Then g is a countable-to-one map. We prove that g is open. Let U be an open subset of D. There is an open subset
V in M such that U = V ∩ D. If g(U) is not open in X, there is x ∈ g(U) ∩ X \ g(U). Since X is first countable,
there is a sequence {xn} in X\g(U) with xn → x in X. Because x ∈ f (V ) and f (V ) is open in X, without loss of
generality, we can assume that each xn ∈ f (V ). Thus f −1(xn) ∩ V �= ∅, and Dxn ∩ V �= ∅. Pick yn ∈ Dxn ∩ V ⊂ U ,
then xn = g(yn) ∈ g(U), a contradiction. Thus g(U) is open in X. Hence g is an open map and X is an open,
countable-to-one image of the metric space D. �
Definition 2. Let B be a family of subsets of a space X. B is said to be an ℵ0-weak base for X if B = ⋃{Bx(n): x ∈
X, n ∈ N} satisfies

(1) For each x ∈ X, n ∈ N, Bx(n) is closed under finite intersections and x ∈ ⋂
Bx(n).

(2) A subset U of X is open if and only if whenever x ∈ U and n ∈ N, there exists a Bx(n) ∈ Bx(n) such that
Bx(n) ⊂ U .

X is called ℵ0-weakly first-countable [10] or weakly quasi-first-countable in the sense of Sirois-Dumais [9] if Bx(n)

is countable for each x ∈ X, n ∈ N.
If Bx(n) = Bx(1) for each n ∈ N in the definition of ℵ0-weak bases, the B is said to be a weak base for X [1].

X is called weakly first-countable or g-first countable in the sense of Arhangel’skiı̌ [1] if Bx(1) is countable for each
x ∈ X.

Let X be a space. P ⊂ X is called a sequential neighborhood of x in X, if each sequence converging to x in X is
eventually in P . A subset U of X is called sequentially open if U is a sequential neighborhood of each of its points.
X is called a sequential space if each sequential open subset of X is open.

Lemma 3. [9] Every ℵ0-weakly first-countable space is sequential.

Let f :X → Y be a map. f is called subsequence-covering if whenever L is a convergent sequence in Y there is
a convergent sequence S in X such that f (S) is a subsequence of L.

Lemma 4. [6] Let f :X → Y be a map, and Y a sequential space. Then f is quotient if and only if Y is a sequential
space and f is subsequence-covering.

Theorem 5. X is a quotient, countable-to-one image of a metric space if and only if X has a point-countable ℵ0-weak
base.

Proof. Necessity. Let f :M → X be a quotient, countable-to-one map from a metric space M onto the space X. Let
B be a point-countable base for M . For each y ∈ M , let By ⊂ B be a countable, decreasing local base at y in M .
Put B′ = {By : y ∈ M}. Then B′ is a point-countable family of M . Since f is a countable-to-one map, f (B′) is
point-countable in X. We shall check that f (B′) is an ℵ0-weak base for X.

For each y ∈ M , denote By by {By,i : i ∈ N} with each By,i+1 ⊂ By,i . For each x ∈ X, denote f −1(x) by {xn: n ∈
N}. Let Px(n) = f (Bxn). Then f (B′) = ⋃{Px(n): x ∈ X, n ∈ N}. Let U be open in X. For each x ∈ U , n ∈ N,
xn ∈ f −1(U), then Bxn,i ⊂ f −1(U) for some i ∈ N, thus f (Bxn,i) ∈ Px(n) and f (Bxn,i) ⊂ U . On the other hand, let
U be a subset of X satisfying for each x ∈ U,n ∈ N, there exist i ∈ N such that f (Bxn,i) ⊂ U . We prove that U is
open in X. Since f is quotient, X is a sequential space by Lemma 4, it suffices to prove that U is sequential open
in X. Suppose that U is not sequential open, there is a sequence L in X\U converging to x ∈ U . Since f is a quotient
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map, there is a sequence S converging to some xn ∈ f −1(x) in M such that f (S) is a subsequence of L by Lemma 4.
Since the sequence S is eventually in Bxn,i , thus the sequence f (S) is eventually in f (Bxn,i) ⊂ U , a contradiction.
Thus U is sequential open. Hence, X has a point-countable ℵ0-weak base.

Sufficiency. Let B = ⋃{Bx(n): x ∈ X, n ∈ N} be a point-countable ℵ0-weak base, here each Bx(n) =
{Bx(n,m): m ∈ N} with Bx(n,m + 1) ⊂ Bx(n,m) for each m ∈ N. Then any subsequence B′

x of {Bx(n,m)}m∈N

is a network at x in X for each x ∈ X and n ∈ N, i.e., if U is an open neighborhood of x in X, then x ∈ B ⊂ U for
some B ∈ B′

x . We rewrite B = {Bα: α ∈ I }. Endow I with discrete topology and let Ii be a copy of I for each i ∈ N.
For convenience’ sake, two families {Pn}n∈N and {Qn}n∈N of subsets of a space are said to be cofinal if there exist
n0,m0 ∈ N such that Pn0+i = Qm0+i for every i ∈ N. Put

M =
{
α = (αi) ∈

∏
i∈N

Ii : {Bαi
}i∈N is cofinal to Bxα (n) for some xα ∈ X, n ∈ N, {Bαi

}i∈N is a network of xα

}
.

Define f :M → X as f (α) = xα . It is easy to see that f is well-defined and onto because X is Hausdorff and each
Bx(n) is a network of x in X for each n ∈ N. And f (α) = ⋂

i∈N
Bαi

for each α = (αi) ∈ M . Notice that B is point-
countable, then f is countable-to-one. Also f is continuous, in fact, for any neighborhood U of xα , since {Bαi

}i∈N is
a network of xα , there exists m ∈ N such that Bαm ⊂ U . Let V = (I1 × · · · × {αm} × Im+1 × · · ·) ∩ M , then V is an
open neighborhood of α in M and f (V ) ⊂ Bαm ⊂ U , hence f is continuous.

To prove that f is a quotient map, we only need to prove that f is a subsequence-covering map by Lemmas 3
and 4.

Claim. Let L be a sequence converging to x /∈ L in X. Then there exist a subsequence L′ of L and n0 ∈ N such that
L′ is eventually in Bx(n0,m) for any m ∈ N.

In fact, since the set L is not closed in X, there is n0 ∈ N such that Bx(n0,m)∩L �= ∅ for any m ∈ N by Definition 2.
If Bx(n0,m) ∩ L is finite for some m ∈ N, then Bx(n0, k) ⊂ X \ (Bx(n0,m) ∩ L) for some k � m, thus Bx(n0, k) ∩
L = ∅, a contradiction. So Bx(n0,m) ∩ L is infinite for any m ∈ N, hence there exist a subsequence L′ of L such that
L′ is eventually in Bx(n0,m) for any m ∈ N. Denote L by {xk}.

For each i ∈ N, take αi ∈ Ii with Bαi
= Bx(n0, i). Let α = (αi), then α ∈ M . For each k ∈ N, put nk = min{m ∈

N: xk /∈ Bx(n0,m)}. Construct zk = (βi(k)) ∈ ∏
i∈N

Ii as follows: if i < nk , pick βi(k) ∈ Ii with Bβi(k) = Bx(n0, i);
otherwise pick βi(k) ∈ Ii such that Bβi(k) = Bxk

(1, i − nk + 1). Then {Bβi
(k)}i∈N is cofinal to Bxk

(1), thus zk ∈ M

and f (zk) = xk . On the other hand, for each i ∈ N, there is k0 ∈ N such that xk ∈ Bx(n0, i) for any k � k0 because L′
is eventually in Bx(n0, i). Then i < nk when k � k0 by the definition of nk , so βi(k) = αi . It implies that the sequence
{βi(k)}k∈N converges to αi in the discrete space Ii . Hence, {zk} converges to α in M . Therefore, f is subsequence-
covering, and f is a quotient map. �

It is natural to ask whether a quotient s-image of a metric space is a quotient, countable-to-one image of a metric
space. The following example shows that the answer is “no”.

Example 6. There is a closed image of a separable metric space, which is not ℵ0-weakly first-countable.

Proof. Let X = R2\(Q × {0}) be endowed with the subspace topology of R2 with the usual topology. Then X is
a separable metric space. Let Y be the quotient space from X by identifying P × {0} to a point. It is obvious that the
quotient map is a closed map. It has been proved that if an image of a metric space under a closed map is ℵ0-weakly
first-countable, then the each boundary of fibers is σ -compact by Theorem 2.1 in [7]. Since P × {0} is not σ -compact
in X, Y is not ℵ0-weakly first-countable. �

We do not know if a quotient, σ -compact image of a metric space is a quotient, countable-to-one image of a metric
space. We shall give a partial answer to the question.

Recall some related concepts. Let X be a space. A family P of subsets of X is said to be a cs-network [5] for X,
if whenever U is an open set and a sequence {xn} in X converges to a point in U , then {xn} is eventually in P and
P ⊂ U for some P ∈ P . A space is said to be an ℵ0-space [5], if it has a countable cs-network.
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Theorem 7. The following are equivalent for a space X:

(1) X is a quotient, countable-to-one image of a separable metric space.
(2) X is a quotient, σ -compact image of a separable metric space.
(3) X is ℵ0-weakly first-countable and a quotient image of a separable metric space.
(4) X has a countable ℵ0-weak base.
(5) X is an ℵ0-weakly first-countable and ℵ0-space.

Proof. (1) ⇒ (2) is trivial. (2) ⇒ (3) due to [9]. (3) ⇒ (5) is obvious [3]. We shall prove that (5) ⇒ (4) ⇒ (1). Let
P be a countable cs-network which is closed under finite intersections. Let

⋃{Bx(n): x ∈ X, n ∈ N} be an ℵ0-weak
base for X, here each Bx(n) = {Bx(n,m): m ∈ N} with Bx(n,m + 1) ⊂ Bx(n,m) for each m ∈ N. For each n ∈ N, let
Px(n) = {P ∈P: Bx(n,m) ⊂ P for some m ∈ N}. Then Px(n) is closed under finite intersections.

Px(n) is a network of x in X. In fact, suppose not, there is a neighborhood U of x in X such that P �⊂ U for each
P ∈ Px(n). Put {P ∈ P: x ∈ P ⊂ U} = {Pk: k ∈ N}. Then Bx(n,m) �⊂ Pk for any m,k ∈ N. Pick xmk ∈ Bx(n,m)\Pk

for each m � k. Let yi = xmk , where i = k + m(m − 1)/2. Then the sequence {yi} converges to x in X because
{Bx(n,m)}m∈N is a decreasing network of x in X. Since P is a cs-network for X, there exist k, j ∈ N such that
{yi : i � j} ⊂ Pk . Pick i � j such that yi = xmk for some m � k, then xmk ∈ Pk , a contradiction.

Put B = ⋃{Px(n): x ∈ X, n ∈ N}. Then B is countable. We shall prove that B is an ℵ0-weak base for X. We
only need to prove that a subset V of X is open if whenever x ∈ V , n ∈ N, there exists a Px(n) ∈ Px(n) such that
Px(n) ⊂ V . If V is not open in X, then V is not sequentially open because X is sequential by Lemma 3. There is a
sequence L in X\V converging to a point x ∈ V . By the claim in the proof of Theorem 5, there exist a subsequence
L′ of L and n0 ∈ N such that L′ is eventually in Bx(n0,m) for any m ∈ N. But Bx(n0,m) ⊂ Px(n0) for some m ∈ N,
so L′ is eventually in Px(n0) ⊂ V , a contradiction. Hence, B is a countable ℵ0-weak base for X.

(4) ⇒ (1) similar to the proof of the Sufficiency of Theorem 5, where each Ii is countable and M is a separable
metric space. �

In the final part of this section we discuss the closed, countable-to-one images of metric spaces. A space X is said
to be a Fréchet space if whenever x ∈ A in X there is a sequence in A which converges to x in X. A space X is
determined by a cover P if U ⊂ X is open (closed) in X if and only if U ∩P is open (closed) in P for each P ∈P [4].

Theorem 8. Let X be a Fréchet space determined by a countable cover of closed metric subsets. Then X is a closed,
countable-to-one image of a metric space.

Proof. Suppose that X is determined by a countable cover {Xn}n∈N of closed metric subsets. Let Yn = Xn\⋃{Xi : i <

n},Zn = Yn for each n ∈ N. Then Yi ∩ Yj = ∅ if i �= j . Note that if xn ∈ Yn, {xn: n ∈ N} is a closed discrete subspace
of X. In fact, if A ⊂ {xn: n ∈ N}, then A ∩ Xn ⊂ {xi : i � n}, which is closed in Xn for each n ∈ N. Thus A is closed
in X because X is determined by {Xn: n ∈ N}.

Let f :
⊕

n∈N
Zn → X be the obvious map. Then f is a countable-to-one map. Let A be a closed subset in⊕

n∈N
Zn.

Claim. f (A) is closed in X.

Suppose not, there is a sequence {yn} in f (A) with yn → y /∈ f (A). If A ∩ Zi0 ∩ {yn: n ∈ N} is infinite for some
i0 ∈ N, y ∈ A ∩ Zi0 as A ∩ Zi0 is closed. Thus y ∈ f (A), a contradiction. Hence, A ∩ Zi ∩ {yn: n ∈ N} is finite for
each i ∈ N. There is a subsequence {zk} of {yn} such that zk ∈ A ∩ Zik with each ik < ik+1. For each k ∈ N, there
is a sequence {xn(k)} in Yik with xn(k) → zk in X. Thus y ∈ {xn(k): n, k ∈ N}. There is a sequence {xnm(km)}m∈N

converging to y, where each km < km+1. This is a contradiction because {xnm(km): m ∈ N} is closed.
Hence, X is a closed, countable-to-one image of a metric space. �

Example 9. There is a closed image of a countable metric space, which is not determined by a countable cover of
metric subsets.
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Proof. Let X = {(x, y): x, y ∈ Q} be endowed with the subspace topology of R2 with the usual topology. Then X is
a countable metric space. Let A = {(x,0): x ∈ Q}. And let Y = X/A be the quotient space from X by identifying all
the points of A. Then Y is a closed image of a countable metric space. But Y is not determined by a countable cover
of metric subsets by [12, Example 1.5(1)]. �
Question 10. How does one characterize, in intrinsic terms, closed, countable-to-one images of metric spaces?

3. Examples

In this section, two questions about open maps are negatively answered.

Question 11. [11] Does every open map preserve a weakly first-countable space?

We shall give an example which shows that an open, countable-to-one map may not preserve a weakly first-
countable space.

Lemma 12. Let R be the real numbers with the usual topology. Then R has ω1 many disjoint dense subsets.

Proof. For each r ∈ R, put r +Q = {r +q: q ∈ Q}. Pick p1 ∈ P, then p1 +Q is a dense subset that is disjoint with Q.
For α < ω1, assume we have selected out disjoint dense subsets {pβ + Q: β < α}. Let A = R\⋃{pβ + Q: β < α},
pick pα ∈ A ∩ P, then (pα + Q) ∩ (pβ + Q) = ∅ for each β < α. Otherwise, there are r1, r2 ∈ Q such that pα + r1 =
pβ + r2, so pα = pβ + r2 − r1 ∈ pβ + Q, a contradiction. In this way, we obtain ω1 many disjoint dense subsets
{pα + Q: α < ω1}.

Let Sκ be the quotient space by identifying all limit points of the topological sum of κ many convergent sequences.

Example 13. There is an open map from a countable space with a countable weak base onto Sω.

Proof. Let R = ⋃{pi + Q: i ∈ N}, where {pi + Q: i ∈ N} are disjoint dense subsets of R by Lemma 9. We write
pi + Q = {pi + rn: n ∈ N}. For each pi + rn, take a sequence {xj (pi, rn)} which converges to a point x(pi, rn) in R2.
Let M be the topological sum R ⊕ (

⊕{{xj (pi, rn): j ∈ N} ∪ {x(pi, rn)}: i, n ∈ N}). And let X be the quotient space
of M by identifying x(pi, rn) and pi + rn to a point. Then X is a quotient, two-to-one image of the countable metric
space M , hence X is a countable space with a countable weak base [8]. We write Sω = {∞}∪ {zj (i): i, j ∈ N}, where
zj (i) → ∞ for each i ∈ N. Define f :X → Sω as follows: f (R) = {∞}, f (xj (pi, rn)) = zj (i) for each n ∈ N. It is
not difficult to see that f is an open map.

Since Sω is not weakly first-countable [8], it does not hold that spaces with weakly first-countability are preserved
by open maps. �

Gruenhage et al. [4] proved that quotient s-images of metric spaces are preserved by quotient, countable-to-one
maps; and pseudo-open, s-images of metric spaces are preserved by open, s-maps. They asked the following question
in [4].

Question 14. Are quotient s-images of metric spaces preserved by open, s-maps?

We shall give a negative answer to this question by the following example, which also shows that an open compact
map may not preserve a weakly first-countable space. This is another negative answer to Question 11.

Example 15. There is an open compact map from a quotient, two-to-one image of a metric space onto Sω1 .

Proof. Let {pα + Q: α < ω1} be disjoint families of dense subsets of R by Lemma 9. We write {x ∈ [0,1]: x ∈ pα +
Q} = {pα + rn: n ∈ N}. For each α < ω1 and n, j ∈ N, let xj (pα, rn) = (pα + rn,1/j) and x(pα, rn) = (pα + rn,0).
Then xj (pα, rn) → x(pα, rn) in R2. For α < ω1, let Mα = (

⋃ {xj (pα, rn): j ∈ N} ∪ {x(pα, rn)}) ∪ {xα(j): α <
n∈N
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ω1, j ∈ N}, here each xα(j) ∈ R2. Define a topology on Mα as follows: each xj (pα, rn) is an isolated point; an element
of a local base of xα(j) in Mα has the form {xα(j)} ∪ {xj (pα, rn): n � m},∀m ∈ N; an element of a local base of
x(pα, rn) in Mα has the form {x(pα, rn)} ∪ {xj (pα, rn): j � m}, ∀m ∈ N. It is easy to see that Mα is a countable,
regular and first-countable space, hence it is a metrizable space. Let M be the topological sum of {Mα: α < ω1}. Let
X be the quotient space of a topological sum [0,1] ⊕ M by identifying x(pα, rn) and pα + rn to a point. Then X is
a quotient, two-to-one image of a metric space. Thus X is also a weakly first-countable space [8].

We write Sω1 = {∞} ∪ {xj (α): j ∈ N, α < ω1}, where xj (α) → ∞ for each α < ω1. Define f :X → Sω1 by
f ([0,1]) = {∞}, f ({xj (pα, rn): n ∈ N} ∪ {xα(j)}) = {xj (α)}. It is easy to see that f is an open, compact, s-map.

Since Sω1 is not any quotient, s-image of a metric space [6], it shows that an open, s-map may not preserve
a quotient, s-image of a metric space. It is also proved that an open, compact map may not preserve a weakly first-
countable space. �
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