Acta Math. Hungar., 2007 DOI: 10.1007/s10474-007-5293-5

NOTES ON SYMMETRIC g-FUNCTIONS

K. LI^1 and S. $LIN^2 *$

¹ Department of Mathematics, Zhangzhou Normal University, Zhangzhou 363000, P. R. China e-mail: likd56@126.com

² Department of Mathematics, Zhangzhou Normal University, Zhangzhou 363000, P. R. China Institute of Mathematics, Ningde Teachers' College, Ningde 352100, P. R. China e-mail: linshou@public.ndptt.fj.cn

(Received December 23, 2005; accepted October 6, 2006)

Abstract. A number of generalized metric spaces have been defined or characterized in terms of g-functions. Symmetric g-functions are discussed by C. Good, D. Jennings and A. M. Mohamad. In this paper, some questions about symmetric g-functions are answered, particularly it is shown that every sym-wg-space is expandable.

1. Introduction

A g-function on a topological space (X, τ) is a mapping $g: \omega \times X \to \tau$ such that $x \in g(n, x)$ for each $n \in \omega$ [5]. A number of generalized metric spaces have been defined or characterized in terms of g-functions, which generalized ball neighborhoods in metric spaces [4, 5, 6, 9]. Ball neighborhoods are symmetric. A g-function g on a space X is said to be symmetric if for each $n \in \omega$ and $x, y \in X, y \in g(n, x)$ whenever $x \in g(n, y)$. The symmetric g-functions are studied by C. Good, D. Jennings and A. M. Mohamad in [3]. It turns out that the majority of symmetric g-functions fall into one

^{*}The corresponding author. The project is supported by the NNSF (10571151) and NSF (2006J0397) of Fujian Province of China.

Key words and phrases: symmetric g-functions; sym-wg-spaces; expandable spaces; G_{δ} diagonals.

²⁰⁰⁰ Mathematics Subject Classification: 54E18, 54D15, 54D20, 54E35.

K. LI and S. LIN

of four known classes of spaces, which are metrizable spaces, wM-spaces, osemimetrizable spaces or β -spaces. The following questions are posed in [3].

QUESTION 1.1. Is every sym-wg-space discretely expandable?

QUESTION 1.2. Is every θ -refinable sym-wg-space paracompact?

QUESTION 1.3. Is every sym-wg-space with a G_{δ} -diagonal metrizable?

In this paper Questions 1.1 and 1.2 are affirmatively answered (Theorem 2.1 and Corollary 2.2), Question 1.3 is negatively answered (Example 2.4) and some results in [3] are improved.

Let \mathcal{U} be a cover of a space X. For each $A \subset X$, put st $(A, \mathcal{U}) = \bigcup \{U \in \mathcal{U} : A \cap U \neq \emptyset\}$, and st^{k+1} $(A, \mathcal{U}) =$ st $(\operatorname{st}^k(A, \mathcal{U}), \mathcal{U})$ for all $k \in \omega$. It is easy to check that $\overline{\operatorname{st}(A, \mathcal{U})} \subset \operatorname{st}^2(A, \mathcal{U})$ if \mathcal{U} is an open cover of X. We refer the reader to [1] or [2] for notations and terminology not explicitly given here; however we do not require paracompact spaces and θ -refinable spaces or submetacompact spaces to satisfy any separation axioms.

2. Main results

First recall some related definitions. A space (X, τ) is a sym-wg-space [3] if there is a symmetric g-function $g: \omega \times X \to \tau$ such that if $\{x, x_n\} \subset g(n, y_n)$ for all $n \in \omega$, then $\{x_n\}$ has a cluster point in X. A space X is said to be expandable [8] if for every locally finite collection $\{C_\alpha\}_{\alpha \in \Lambda}$ (without loss of generality closed sets) is expandable to a locally finite collection of open sets in X, i.e., there is a locally finite collection $\{U_\alpha\}_{\alpha \in \Lambda}$ of open sets of X such that $C_\alpha \subset U_\alpha$ for all $\alpha \in \Lambda$. X is said to be discretely expandable [10] if every discrete collection of sets of X is expandable to a locally finite collection of open sets.

It is obvious that every expandable space is discretely expandable. And it is shown that every normal, sym-wg, T_1 -space is expandable [3, Theorem 18]. The main result in this paper is as follows.

THEOREM 2.1. Every sym-wg-space is expandable.

PROOF. Let (X, τ) be a sym-wg-space. There is a symmetric g-function $g: \omega \times X \to \tau$ such that if $\{x, x_n\} \subset g(n, y_n)$ for all $n \in \omega$, then $\{x_n\}$ has a cluster point in X. Without loss of generality, we can assume that each $g(n+1, x) \subset g(n, x)$. Put $\mathcal{U}_n = \{g(n, x) : x \in X\}$ for each $n \in \omega$. Then $\{\mathcal{U}_n\}$ is a sequence of open covers of X.

Step 1. For a sequence $\{x_n\}$ and x in X, if $x_n \in \operatorname{st}^2(x, \mathcal{U}_n)$ for all $n \in \omega$, then $\{x_n\}$ has a cluster point in X. There are $a_n, b_n, c_n \in X$ such that $x \in g(n, a_n), x_n \in g(n, b_n)$ and $c_n \in g(n, a_n) \cap g(n, b_n)$ by $x_n \in \operatorname{st}^2(x, \mathcal{U}_n)$. Then $\{c_n\}$ has a cluster point $c \in X$. There is a subsequence $\{c_{n_i}\}$ of

Acta Mathematica Hungarica, 2007

 $\mathbf{2}$

 $\{c_n\}$ such that $c_{n_i} \in g(i, c)$ for all $i \in \omega$, thus $c \in g(i, c_{n_i})$ and $b_{n_i} \in g(n_i, c_{n_i}) \subset g(i, c_{n_i})$ for all $i \in \omega$ by the symmetry. Hence $\{b_{n_i}\}$ has a cluster point in X. By a similar method, $\{x_n\}$ has a cluster point in X.

Step 2. For a sequence $\{x_n\}$ and x in X, if $x_n \in \operatorname{st}^3(x, \mathcal{U}_n)$ for all $n \in \omega$, then $\{x_n\}$ has a cluster point in X. If not, then $\{\{x_n\}\}_{n\in\omega}$ is locally finite in X, thus $\{\operatorname{st}(x_n, \mathcal{U}_n)\}_{n\in\omega}$ is locally finite in X. Otherwise, there is $z \in X$ such that for each $n \in \omega$, st $(z, \mathcal{U}_n) \cap \operatorname{st}(x_{i(n)}, \mathcal{U}_{i(n)}) \neq \emptyset$ for some $i(n) \geq n$. Then $x_{i(n)} \in \operatorname{st}(\operatorname{st}(z, \mathcal{U}_n), \mathcal{U}_{i(n)}) \subset \operatorname{st}^2(z, \mathcal{U}_n)$, and $\{x_{i(n)}\}$ has a cluster point in X by Step 1, a contradiction.

Now, $\operatorname{st}^2(x,\mathcal{U}_n) \cap \operatorname{st}(x_n,\mathcal{U}_n) \neq \emptyset$ by $x_n \in \operatorname{st}^3(x,\mathcal{U}_n)$, thus take $y_n \in \operatorname{st}^2(x,\mathcal{U}_n) \cap \operatorname{st}(x_n,\mathcal{U}_n)$ for all $n \in \omega$. Then $\{y_n\}$ has a cluster point in X by Step 1, a contradiction because $\{\operatorname{st}(x_n,\mathcal{U}_n)\}_{n\in\omega}$ is locally finite in X.

Step 3. If $\{B_n\}_{n\in\omega}$ is an increasing open cover of X, there is a locally finite open cover $\{G_n\}_{n\in\omega}$ of X with each $\overline{G}_n \subset B_n$. Put $F_n = X \setminus \operatorname{st}^2(X \setminus B_n, \mathcal{U}_n)$ for all $n \in \omega$. Then $\{F_n\}_{n\in\omega}$ is a closed cover of X. In fact, if $z \in X \setminus \bigcup_{n\in\omega} F_n = \bigcap_{n\in\omega} \operatorname{st}^2(X \setminus B_n, \mathcal{U}_n)$, then $\operatorname{st}^2(z, \mathcal{U}_n) \cap (X \setminus B_n) \neq \emptyset$, and take $z_n \in \operatorname{st}^2(z, \mathcal{U}_n) \cap (X \setminus B_n)$ for all $n \in \omega$. Let c be a cluster point of $\{z_n\}$ in X by Step 1. Then $c \in \bigcap_{n\in\omega} (X \setminus B_n)$, a contradiction.

Let $H_n = X \setminus \overline{\operatorname{st}(X \setminus B_n, \mathcal{U}_n)}$, then $F_n \subset H_n \subset \overline{H_n} \subset B_n$ for all $n \in \omega$. Thus $\{H_n\}_{n \in \omega}$ is an open cover of X. Put $B'_n = \bigcup_{i \leq n} H_i$ for each $n \in \omega$. Then $\{B'_n\}_{n \in \omega}$ is an increasing open cover of X. By a similar method, there is an open cover $\{H'_n\}_{n \in \omega}$ of X with each $\overline{H'_n} \subset B'_n$. For each $n \in \omega$, put $G_n = H_n \setminus \bigcup_{i < n} \overline{H'_i}$, then G_n is open and $\overline{G_n} \subset B_n$.

 $\{G_n\}_{n\in\omega}$ is a locally finite cover of X. In fact, let $x \in X$, then $x \in H'_m$ for some $m \in \omega$. Thus $H'_m \cap G_n = \emptyset$ for each n > m, which implies that $\{G_n\}_{n\in\omega}$ is locally finite in X. On the other hand, $\bigcup_{i < n} \overline{H'_i} \subset \bigcup_{i < n} B'_i = \bigcup_{i < n} H_i$, thus $H_n \setminus \bigcup_{i < n} H_i \subset G_n$, which implies that $\{G_n\}_{n\in\omega}$ is a cover of X.

Step 4. X is expandable. Let $\{F_{\lambda}\}_{\lambda\in\Gamma}$ be a locally finite collection of closed subsets of X. For each $n \in \omega$, put $A_n = \{x \in X : \{\lambda \in \Gamma : \operatorname{st}^2(x, \mathcal{U}_n) \cap F_{\lambda} \neq \emptyset\}$ is finite $\}$, $B_n = \operatorname{int}(A_n)$, then $B_n \subset B_{n+1}$. We shall check that $\{B_n\}_{n\in\omega}$ is a cover of X. In fact, for each $z \in X$, there is $n \in \omega$ such that $\{\lambda \in \Gamma : \operatorname{st}^3(z, \mathcal{U}_n) \cap F_{\lambda} \neq \emptyset\}$ is finite by Step 2, then $\operatorname{st}(z, \mathcal{U}_n) \subset A_n$, thus $z \in B_n$. There is a locally finite open cover $\{G_n\}_{n\in\omega}$ of X with each \overline{G}_n $\subset B_n$ by Step 3. For each $\lambda \in \Gamma, n \in \omega$, put $G_{\lambda n} = \operatorname{st}(F_{\lambda}, \mathcal{U}_n) \cap G_n, H_{\lambda} =$ $\bigcup_{n\in\omega} G_{\lambda n}$, then H_{λ} is open in X, and $F_{\lambda} \subset H_{\lambda}$. We shall show that $\{H_{\lambda}\}_{\lambda\in\Gamma}$ is locally finite in X. In fact, for each $x \in X$, denote $\{n \in \omega : x \in \overline{G}_n\} = \{n_i :$

Acta Mathematica Hungarica, 2007

K. LI and S. LIN

 $i \leq k$ for some $k \in \omega$, and $m(x) = \max\{n_i : i \leq k\}$. Put $V = \operatorname{st}(x, \mathcal{U}_{m(x)}) \setminus \cup \{\overline{G}_n : x \notin \overline{G}_n, n \in \omega\}$, then V is an open neighborhood of x in X. For each $i \leq k$, $\{\lambda \in \Gamma : \operatorname{st}(x, \mathcal{U}_{m(x)}) \cap G_{\lambda n_i} \neq \emptyset\} \subset \{\lambda \in \Gamma : \operatorname{st}^2(x, \mathcal{U}_{n_i}) \cap F_\lambda \neq \emptyset\}$ is finite by $x \in B_{n_i}$, thus V only meets with finitely many elements of $\{H_\lambda\}_{\lambda \in \Gamma}$. Hence X is expandable. \Box

COROLLARY 2.2. Every θ -refinable sym-wg-space is paracompact.

PROOF. Since every θ -refinable (= submetacompact) expandable space is paracompact [8, Theorem 2.11], every θ -refinable sym-wg-space is paracompact by Theorem 2.1. \Box

A space X is said to be have a G_{δ} -diagonal [4] if there is a sequence $\{\mathcal{U}_n\}$ of open covers of X such that $\{x\} = \bigcap_{n \in \omega} \operatorname{st} (x, \mathcal{U}_n)$ for each $x \in X$. A cover \mathcal{U} of a space X is said to be T_1 -separating [4] if whenever x and y are two points of X, then $x \in U \subset Y \setminus \{y\}$ for some $U \in \mathcal{U}$.

COROLLARY 2.3. A space is metrizable if and only if it is a θ -refinable sym-wg, T_2 -space with a G_{δ} -diagonal or a point-countable T_1 -separating open cover.

PROOF. The necessity is obvious. Let X be a θ -refinable sym-wg, T_2 -space with a G_{δ} -diagonal or a point-countable T_1 -separating open cover. Then X is a regular space by Corollary 2.2, thus it is metrizable by [3, Corollary 20]. \Box

A space X is said to be *developable* [6] if there exists a sequence $\{\mathcal{U}_n\}$ of open covers of X such that $\{ \operatorname{st}(x,\mathcal{U}_n) : n \in \omega \}$ is a local base of x in X for each $x \in X$. A space X is developable if and only if it has a g-function g such that if $\{x, x_n\} \subset g(n, y_n)$ for all $n \in \omega$, then $\{x_n\}$ converges to x [6]. Every developable T_0 -space has a G_{δ} -diagonal.

PROPOSITION 2.4. There exists a G_{δ} -diagonal, sym-wg-space with a point-countable T_1 -separating open cover, which is not metrizable.

PROOF. Let $\mathbf{I} = [0, 1]$ be the unit closed interval, and $X = \mathbf{I} \times \{0, 1, 1/2, 1/3, ...\}$. X is endowed with the following topology τ . $\mathbf{I} \times \{1, 1/2, 1/3, ...\}$ as an open subspace of X has the usual Euclidean topology; for each $a \in \mathbf{I}$, an element of a local base of (a, 0) in X is of the form $(U \times \{0\}) \cup (\mathbf{I} \times \{1/k : k > n\})$, where U is an open neighborhood of a in \mathbf{I} with the usual Euclidean topology and $n \in \omega$.

It is easy to check that X is a T_1 and compact space with a countable base. Thus X is a θ -refinable sym-wg-space with a point-countable T_1 -separating open cover. X is not metrizable because it is not a T_2 -space.

A g-function $g: \omega \times X \to \tau$ on X is defined as follows. Let d be the usual Euclidean metric on the real line **R**. For each $a \in \mathbf{I}$, and $n, m - 1 \in \omega$, put

$$g(n, (a, 0)) = \left(\left\{b \in \mathbf{I} : d(a, b) < 1/(n+1)\right\} \times \{0\}\right) \cup \left(\mathbf{I} \times \{1/k : k > n\}\right);$$

Acta Mathematica Hungarica, 2007

$$g(n, (a, 1/m)) = \{ b \in \mathbf{I} : d(a, b) < 1/(n+1) \} \times \{1/m\}.$$

It is not difficult to verify that if $\{x, x_n\} \subset g(n, y_n)$ for all $n \in \omega$, then $\{x_n\}$ converges to x in X. Thus X is developable, and X has a G_{δ} -diagonal. The *g*-function g on X is not symmetric. In fact, there is no symmetric *g*-function on X satisfying the condition of developability because it has been shown that a T_0 -space with the condition of developability is metrizable [3, Theorem 7]. \Box

QUESTION 2.5. Is every sym-wg, T_2 -space with a G_{δ} -diagonal metrizable?

References

- D. K. Burke, Covering properties, in: Handbook of Set-Theoretic Topology, K. Kunen, J. E. Vaughan (eds.), Elsevier Science Publishers B. V. (Amsterdam, 1984), pp. 347–422.
- [2] R. Engelking, *General Topology* (revised and completed edition), Heldermann Verlag (Berlin, 1989).
- [3] C. Good, D. Jennings and A. M. Mohamad, Symmetric g-functions, Topology Appl., 134 (2003), 111–122.
- [4] G. Gruenhage, Generalized metric spaces, in: Handbook of Set-Theoretic Topology, K. Kunen, J. E. Vaughan (eds.), Elsevier Science Publishers B. V. (Amsterdam, 1984), pp. 423–501.
- [5] R. E. Hodel, Spaces defined by sequences of open covers which guarantee that certain sequences have cluster points, *Duke Math. J.*, **39** (1972), 253–263.
- [6] R. E. Hodel, Modern metrization theorem, in: *Encyclopedia of General Topology*, K. P. Hart, J. Nagata and J. E. Vaughan (eds.), Elsevier Science Publishers B. V. (Amsterdam, 2004), 242–246.
- [7] T. Ishii, On wM-spaces, Proc. Japan Acad., 46 (1971), 5-15.
- [8] L. L. Krajewski, On expanding locally finite collections, Canad. J. Math., 23 (1971), 58–68.
- [9] A. M. Mohamad, Generalization of G^*_{δ} -diagonals and $w\Delta$ -spaces, Acta Math. Hungar., 80 (1998), 285–291.
- [10] J. C. Smith and L. L. Krajewski, Expandability and collectionwise normality, Trans. Amer. Math. Soc., 160 (1971), 437–451.